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Abstract Only a fraction of the species that are

introduced succeed in the non-native environment,

while others fail to survive, reproduce and/or disperse.

Understanding the causes underlying each outcome is

key to designing better early detection, prevention and

management programs, and to deepen our knowledge

of the invasion process. Here, we examine whether

predator–prey interactions favor the invasion of a

potentially neurotoxic mollusk in the South Western

Atlantic (SWA). The grey side-gilled sea slug

Pleurobranchaea maculata was recently detected in

the SWA, where it has spread rapidly along the coast.

In this work, we examine two hypotheses that may

have driven the invasion success of P. maculata: (1) it

has a high dietary plasticity, able to exploit resources

in a variety of habitats within the invaded range and

simultaneously (2) it lacks native predators that can

control its abundance or spread. First, we identified the

prey sources of P. maculata through experimental

trials; then we compared its diet composition between

different sites and seasons; and finally we experimen-

tally assessed the effect of native potential predators.

We found that diet composition is broad and varies in

time and space, probably in relation to prey
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availability. Additionally, we observed that local

predators do not recognize P. maculata as a prey.

Probably, mechanisms underlying predator avoidance

are related to the presence of chemical defenses that

can be novel in the invaded environment. We propose

that predator–prey interactions are key drivers favor-

ing the establishment of non-native P. maculata via

high levels of plasticity to exploit resources, the

absence of biotic resistance and the increased avail-

ability of food associated with artificial substrates such

as ports are probable mechanisms underlying the

invasion success of this marine gastropod.

Keywords Invasive species � Invasion success �
Predator–prey ecology � Pleurobranchaea maculata �
Dietary plasticity � Biotic resistance � Resource

availability � Novel weapons

Introduction

Biological invasions represent a major environmental

threat in the Anthropocene, recognized as one of the

top five direct drivers of change in nature that have

accelerated during the past 50 years (Vitousek et al.

1997; Orensanz et al. 2002; IPBES 2019; Schwindt

et al. 2020). Yet, while some non-native species

produce severe ecological or economic impacts, or

threaten human welfare (Pyšek and Richardson 2010;

Albins and Hixon 2013; Bortolus et al. 2015; Pejchar

and Mooney 2009), many fail to establish after

introduction (Zenni and Nuñez 2013). Predicting

whether a species will succeed in the invasion or

not, is the key to creating better early detection,

prevention and management programs (van Kleunen

et al. 2010). Understanding what causes these different

potential outcomes has promoted countless research

efforts (Kolar and Lodge 2001), and several hypothe-

ses arose as a consequence (Simberloff and Von Holle

1999; Mack et al. 2000; Catford et al. 2009; Simberloff

et al. 2013; Jeschke 2014; Enders et al. 2020). Despite

some of these hypotheses having received more

empirical support than others (Jeschke et al. 2012), a

general and robust explanation for invasion success is

still lacking. Some of the causes rely on the method-

ological difficulties confronted by invasion ecology

(Heger et al. 2013; Gribben and Byers 2020). For

example, while some of these hypotheses can be tested

within the invasive range only (i.e. biotic resistance,

plasticity, novel weapons, invasional meltdown, etc.),

others require comparisons between the traits and

processes between the invasive and the native range

simultaneously (i.e. enemy release hypothesis, evolu-

tion of increased competitive ability, etc.) (Hierro et al.

2005; Gribben and Byers 2020). To overcome these

limitations, several authors have attempted to syn-

thetize these hypotheses into more comprehensive

frameworks (Barney and Whitlow 2008; Catford et al.

2009; Gurevitch et al. 2011; Heger et al. 2013; Saul

et al. 2013; Jeschke 2014; Enders et al. 2020), to

contextualize and hierarchize them and achieve a

better understanding on the causes favoring the

invasion process.

Although there are some differences among these

comprehensive frameworks, the tendency is to group

hypotheses that refer to similar processes in a group or

cluster of hypotheses (Catford et al. 2009; Enders et al.

2020). One of these groups addresses how biotic

interactions with native species affect the invader’s

success. Here, for example, the biotic resistance

hypothesis proposes that the predators and competitors

may limit the establishment of non-native species

through predation and competition (Kremer and da

Rocha 2016; Giachetti et al. 2019). Another group of

hypotheses rely on the intrinsic traits of the non-native

species as an explanation to its success (Enders et al.

2020). In this cluster, the plasticity hypothesis argues

that successful invasive species are more plastic than

native or non-invasive introduced species (Richards

et al. 2006). This hypothesis predicts that the invasive

species will succeed if is better able to maintain fitness

in unfavorable conditions, to increase fitness in

favorable conditions, or both. Another trait-based

hypothesis is the novel weapons hypothesis, which

posits that non-native species release or harbour

allelopathic chemicals that have a negative effect on

non-adapted native competitors or predators (Call-

away and Ridenour 2004). For instance, the non-native

nudibranch Lamprohaminoea (= Haminoea) cyano-

marginata (Heller & T. E. Thompson, 1983) (Crocetta

et al. 2017), produces brominated tetrahydropyran, a

toxin that repels generalist potential predators like fish

and crustaceans (Polner et al. 1989; Mollo et al. 2008).

In animals, novel weapons can also consist of physical

structures or behavioral responses that can also favor

them as non-native predators, whenever local prey do

not recognize them as a threat (Guiden et al. 2019), or
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if they provide a competitive advantage over native

predators (Albins 2013; Albins and Hixon 2013;

Rojas-Vélez et al. 2019). A third cluster of hypotheses

rely on the availability of resources to account for the

invaders success (Enders et al. 2020). In this group, the

increased resource availability hypothesis argues that

invasiveness is favored if there is an increase in the

levels of resources as a result of natural fluctuations or

induced by anthropogenic disturbance (Sher and Hyatt

1999; Davis et al. 2000). For example, tunicate

invasion has been promoted by fluctuating nutrient

loads and an increase in substrate availability in

several ports in the Gulf of Saint Lawrence (Locke

et al. 2007). Ports are major hotspots for marine

biological invasions (Hewitt et al. 2004; Schwindt

et al. 2014) and provide an increased availability of

settlement space through the presence of breakwaters,

pilings and other structures, which enhances the

success of invasive species (Holloway and Connell

2002; Glasby et al. 2007; Airoldi and Bulleri 2011).

In practice, almost every non-native species faces

both restrictive and favorable conditions and interac-

tions when introduced in a novel environment.

Whether they succeed or fail in the invaded range

greatly depends on the overall outcome of these

factors. Thus, the mechanisms underpinning the

invasion success of a species are a matter of great

interest in invasion ecology and environmental con-

servation. The grey side-gilled sea slug Pleurobran-

chaea maculata (Quoy & Gaimard, 1832) is a

generalist predator and scavenger which feeds on a

variety of soft-bodied marine invertebrates and algae

(Ottaway 1977; Willan 1984; Bökenhans et al. 2019)

and it represents a potential food source for local pre-

existent predators. It is native to New Zealand and

South Eastern Australia and was recently introduced

in the South Western Atlantic (SWA) (Farı́as et al.

2015, 2016). This species is the first opisthobranch

known to accumulate tetrodotoxin (McNabb et al.

2010), and the first species in which this toxin was

reported in the SWA (Farı́as et al. 2019), thus probably

constituting a novel weapon in this area. This highly

potent neurotoxin inhibits the propagation of action

potentials in both muscular and nervous tissues

through the blocking of sodium channels (Narahashi

2001). Recently, neurotoxins of P. maculata were

responsible for a series of dog poisonings within the

native range (McNabb et al. 2010) and possibly also in

the invaded range (Papalardo and Battini 2019),

posing a threat to human welfare. In less than six

years, it has become extremely abundant in some areas

of the SWA, reaching densities of almost 5 ind m-2

(Battini 2020) that represent a ten-fold increase over

the highest abundances reported in the native range

(Taylor et al. 2011). Additionally, it has spread along

the coastline for more than 2000 km (Farı́as et al.

2016), and has the potential to spread even further

(Battini et al. 2019).

In this work, we aim to disentangle the predator–

prey interactions involving the non-native P. maculata

in the SWA to address whether they favor or reduce

the probabilities for its invasion success. We hypoth-

esize that P. maculata is a predator with high dietary

plasticity, able to exploit resources in habitats with

different characteristics within the invaded range and

it has no predators that can control its abundance or

spread. Specifically, our objectives are (1) to identify

the diet composition of P. maculata in different types

of habitats within the SWA and (2) to determine the

effect of local potential predators (fish, octopus and

crabs) on the survival of P. maculata. We discuss the

results within the framework of hypotheses related to

the intrinsic characteristics of this species (plasticity,

novel weapons), the biotic interactions entangled in

the invaded region (biotic resistance), and the avail-

ability of resources in different types of habitats.

Materials and methods

Study area

The study was conducted in the Almirante Storni port

of Puerto Madryn (42�4401500 S, 65�0104400 W) and

adjacent areas, which are located in the Nuevo gulf, in

the Argentine Patagonia (Fig. 1). The port is a natural

coastal port with a mean tidal range of 4.13 m (www.

hidro.gob.ar) and a maximum depth of 9 m in the

study site. The area has a mean annual sea surface

temperature of 14.3 �C, ranging from a minimum of

8 �C in winter (July–August) and a maximum of

21 �C in summer (January–March), and a relatively

constant salinity that varies between 33.5 and 33.9%
(Rivas and Ripa 1989). Together with the Piedra

Buena port, they constitute the port area of Puerto

Madryn, which represents the most active port along

the Argentine Patagonia (Schwindt et al. 2014).
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Diet composition of Pleurobranchaea maculata

Aquarium experiments

In order to identify potential prey sources of P.

maculata, we conducted an experiment using ten

different species as potential prey. These species

(Table 1) were selected from the local species pool

considering the diet reported in specific literature

(Ottaway 1977; Willan 1984; Bökenhans et al. 2019).

We manually collected potential prey and predators by

SCUBA diving from the Storni port and transported to

the CCT CONICET-CENPAT Experimental Aquar-

ium Service (SAE for its Spanish spelling) in insulated

containers, within 2 h from collection, where we

housed them in 100 L plastic containers. We replaced

approximately 30% of the total volume with filtrated

water every 2–3 days to ensure good water quality.

We regularly measured salinity (� VEE GEE

A366ATC Refractometer) and nitrite levels using

specific tests (� Sera GmbH). We acclimatized all the

animals to the aquarium for at least a week prior to the

experiments, and we fed each P. maculata with a dead

mussel every 1–2 days prior to the starvation period.

We chose dead mussels [Perumytilus purpuratus

(Lamarck, 1819)] as food sources for the sea slugs

during the acclimatization period because of various

reasons: (a) mussels are recognized food sources in the

field (Taylor et al. 2015; Bökenhans et al. 2019) and

were readily eaten in preliminary trials; (b) as most

potential live prey were selected as experimental prey,

we intentionally wanted to offer dead food during this

period to minimize confounding effects with the

experiment and (c) other dead food sources such as

fish or squid rapidly deteriorated the water quality

during preliminary trials, while mussels were rela-

tively ‘clean’ and required minimum water exchange.

To normalize the satiation levels of the sea slugs prior

to the experiment, acclimatization was followed by a

starvation period that lasted 4 days. Based on prelim-

inary tests, this period was sufficient to guarantee that

the animals would not be satiated during the exper-

iments (Fig. 8 in Supplementary material).

The experimental setup consisted of plastic 100 L

rectangular containers, which were divided into three

similar compartments using a plastic mesh with 2 mm2

holes to ensure water and oxygen exchange between

compartments. We randomly assigned the treatments

to each compartment, following a randomized block

design. Treatments were as follows: prey-predator

treatment (PPT), consisting of a single individual of P.

maculata and a single individual (or colony fragment)

of the potential prey species, prey control (PYC),

consisting of a single individual (or a colony fragment

similar in size to PPT) of the potential prey species and

predator control (PDC), consisting of a single P.

maculata and a dead mussel similar to those offered

during the acclimatization period. The rationale for the

latter control was that if the predators continued to

feed on the same food sources that were offered during

the acclimatization period, this indicated that they

were healthy and hungry during the experimental

period. We performed at least 10 independent repli-

cates for each potential prey species. At the end of the

experiments, which lasted 48 hs, we determined

whether each prey had been consumed or not (see

Supplementary for details on consumption criteria for

each species). We compared the frequency of con-

sumption between PDC and PPT through Fisher exact

tests. Trials in which the prey in PYC died were not

Fig. 1 Map of the study area showing the location of the two

main ports of Puerto Madryn, the Storni and Piedra Buena (PB)

ports and other localities mentioned in the text: NP: Nuevo park,

PE: Punta Este, FS: Folı́as shipwreck and CA: Cerro Avanzado

point
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considered in the analyses. After the experiments, we

placed a voucher of every prey species in the

IBIOMAR invertebrate collection (CNP-INV) in

order to ensure taxonomic reliability and experimental

repeatability (Table 1).

Stomach content analysis

In order to determine the diet composition and account

for seasonal and spatial variation, we collected

specimens of P. maculata in winter (June–August)

and summer (January-March) from the port and from a

natural rocky reef area near Punta Este (Fig. 1).

Approximately 50 individuals (minimum of 45) were

collected manually in each site and season through

SCUBA diving. To minimize food digestion, imme-

diately after collection we fixed the individuals in

formalin 10% in seawater for 48 hs and preserved

them in 70% ethanol until dissection.

In the laboratory, we carefully dried the animals by

using paper towels, and weighed them to estimate the

whole wet weight (WW). We dissected the individuals

through a dorsal incision of the mantle and removed

the entire gut, from the esophagus to the distal

intestine to weigh it and estimate the full stomach

weight (FSW). Then we removed the stomach content

and stored it in 70% ethanol for subsequent content

analysis, and weighed the empty gut to estimate the

empty stomach weight (ESW). We assessed the

feeding intensity through the repletion index (RI),

which measures the relative amount of food in that

each individual had in the stomach at the time of

collection and was calculated as follows:

RI ¼ FSW � ESWð Þ
WW � FSW � ESWð Þ

We identified all the taxa present in the stomachs at

the lowest possible level under a stereomicroscope

(Leica S6D Greenough) using taxonomic literature

Table 1 Species used as potential prey in the aquarium

experiments, showing the number of replicates for each

species, the percentage of replicates in which the food offer

was consumed in the predator control (PDC) and the predator–

prey trial (PPT), the significance test (Fisher exact test)

comparing these consumption rates, and collection codes for

vouchers added to the IBIOMAR-CONICET Collection (CNP-

INV)

Species N Consumption (%) p-value Collection code

PDC PPT

CNIDARIA

Hydrozoa

*Ectopleura crocea (Agassiz, 1862) 10 100 90 1.000 CNP-INV 3100

Anthozoa

Parabunodactis imperfecta Zamponi & Acuña, 1992 11 100 100 1.000 CNP-INV 3815

Actinothoe lobata (Carlgren, 1899) 15 94 43.8 0.006 CNP-INV 3812

MOLLUSCA

Gastropoda

Chaetopleura isabellei (d’Orbigny, 1841) 10 100 0 \ 0.0001 CNP-INV 3848

Doris fontainii d’Orbigny, 1837 12 73 0 0.001 CNP-INV 3076

*Pleurobranchaea maculata (Quoy & Gaimard, 1832) 10 100 66.7 0.206 CNP-INV 3081

CHORDATA

Ascidiacea

*Diplosoma listerianum (Milne Edwards, 1841) 10 100 50 0.032 CNP-INV 3028

Aplidium variabile (Herdman, 1886) 12 75 0 \ 0.0001 CNP-INV 3024

*Ciona robusta Hoshino & Tokioka, 1967 10 80 0 0.001 CNP-INV 3029

*Ascidiella aspersa (Müller, 1776) 10 100 0 \ 0.0001 CNP-INV 3034

Non-native species are marked with an *. Note that a significant difference implies that the prey was consumed in a different (less)

proportion than the control food (dead mussels)
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(Lichtschein de Bastida and Bastida 1980; Monniot

et al. 1991; Blake and Ruff 2007; Galea et al. 2007;

Häussermann and Försterra 2009; Rocha et al. 2012;

Boraso de Zaixso 2013; Roig-Juñent et al. 2014;

Forcelli and Narosky 2015; Genzano et al. 2017;

Schwindt et al. 2018), prioritizing local or regional

literature unless it was unavailable, and consulting the

CNP-INV invertebrate collection when necessary. In

order to assess dietary variations due to spatial and

temporal food availability, we calculated the fre-

quency of occurrence (FO) of each prey item for each

site and season. To evaluate if the number of stomachs

was sufficient to describe the diversity of the diet of P.

maculata in each site and season, we performed

randomized cumulative prey curves for each site and

season using package ‘vegan’ (Oksanen et al. 2019) in

R (R Core Team 2020). We considered the number

was sufficient when the curve reached a slope of 0.1 or

lower, which represents that 10 extra stomachs are

needed to add an extra species to the prey list.

However, we also tested whether the accumulation

curve reached an asymptote comparing the slope for

the endpoints of the curve to an horizontal line using a

Student’s t-test (Bizzarro et al. 2007).

Finally, to analyze possible differences in P.

maculata size among sites and seasons, we compared

the BW among sites and seasons using linear models

fitted by generalized least squares through package

‘nlme’ (Pinheiro et al. 2018) in R. Given that

preliminary analyses suggested that residuals were

heteroscedastic, we applied a variance structure

through the VarFixed parameter of the function

‘gls’. To evaluate the differences in RI among sites

and seasons, we performed generalized linear models

using beta distribution with package ‘betareg’ (Zeileis

et al. 2018) in R. To evaluate the differences in diet

composition among sites and seasons, we performed a

multiple correspondence analysis (MCA) using ‘ade40

package (Dray et al. 2020) in R. We performed all the

analyses using the R v3.5.2 software (R Core Team

2020), and significance level for all statistical tests was

set at an a = 0.05 (Zar 2010).

Effect of local potential predators

We reviewed the scientific literature on predators of

‘opisthobranch’ sea slugs and identified the main

groups for which there is a record of predation on a sea

slug species (Table 2). We selected as potential

predator species that simultaneously (1) belong to

one of these major groups, (2) are present in the study

area and (3) are sufficiently abundant so that it was

possible to work with them in aquarium or field

experiments. Therefore, we selected two decapod

species [Ovalipes trimaculatus (De Haan, 1833) and

Carcinus maenas (Linnaeus, 1758)], one cephalopod

[Octopus tehuelchus (d’Orbigny, 1834)] and four

species of fish [Sebastes oculatus Valenciennes,

1833, Pinguipes brasilianus Cuvier, 1829, Acanthis-

tius patachonicus (Jenyns, 1840) and Pseudopercis

semifasciata (Cuvier, 1829)] (Table 3).

Aquarium experiments

We evaluated predator–prey interactions between P.

maculata and crabs or octopus in the aquarium (O.

trimaculatus, C. maenas and O. tehuelchus). We

manually collected the crabs in Cerro Avanzado point

or Punta Este (Fig. 1) through SCUBA diving, and

octopuses in the Storni port using artisanal traps made

from PVC tubes. We acclimatized the crabs and

octopus to the experimental conditions for a minimum

of one week, during which we fed them with live

mussels (Mytilus spp.) and crabs (small C. maenas),

respectively. Then, we starved them for a 4–5 day

period before initiating the trials, which lasted 24 h.

We performed the trials in rectangular plastic con-

tainers similar to those used in the previous section.

Each trial consisted of a single specimen of

predator, and four individuals of P. maculata offered

as prey. At the end of each trial, we recorded if at least

one sea slug was consumed and the general condition

of the predator (i.e. if it maintained normal movements

across the container, if it reacted to mechanical

stimulation, if there was any sign of injury or limb

loss in the case of crabs, etc.). To control for predator

satiation, another predator specimen was simultane-

ously offered four individuals of the same prey species

used during the acclimatization period, in an indepen-

dent container. In the case of the octopus O.

tehuelchus, we controlled for predator satiation using

the same predator individual that was used in an initial

trial with P. maculata, instead of using independent

individuals for the two types of food sources. Then,

every octopus was offered a smallC. maenas similar to

that used during the acclimatization period and we

recorded whether it was consumed or not after another

24 h following the trial with P. maculata. This was
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Table 2 Review of the species or groups of species that have been reported preying upon a sea slug (Mollusca: Heterobranchia)

Predator Prey References

PLATYHELMINTHES

Paraplanocera oligoglena (Shmarda, 1859) Aplysia juliana (Quoy & Gaimard, 1832) Kirkendale (2006)

Paraplanocera oligoglena (Shmarda, 1859) Mariaglaja inornata (Baba, 1949) Kirkendale (2006)

NEMERTEA

Unidentified nemertean Aplysia parvula (Mörch, 1863) Koh (2005a)

Lineus fuscoviridis Takakura, 1898 Atagema intecta (Kelaart, 1859) Koh (2006)

MOLLUSCA

Gastropoda

Gymnodoris ceylonica (Kelaart, 1858) Stylochelius striata (Quoy & Gaimard, 1832) Johnson (1999a), Bonnet

(2006)

Philinopsis speciosa Pease, 1860 Stylochelius striata (Quoy & Gaimard, 1832) Roberts (2005)

Navanax inermis (J. G. Cooper, 1862) Aplysia californica J. C. Cooper, 1863 Wright (2006)

Gymnodoris striata (Eliot, 1908) Plakobranchus ocellatus van Hasselt, 1824 Johnson (1999b)

Gymnodoris citrina (Bergh. 1877) Gymnodoris citrina (Bergh, 1877) Johnson (2000)

Tyrannodoris luteolineata (Baba, 1936) Nembrotha kubaryana Bergh, 1877 Anderson (2006), Gudgeon

(2006)

Tyrannodoris luteolineata (Baba, 1936) Nembrotha aurea Pola, Cervera & Gosliner,

2008

Ogden (2008)

Gymnodoris impudica (Bergh, 1905) Chromodoris lineolata (van Hasselt, 1824) Toh (2008)

Gymnodoris impudica (Bergh, 1905) Chromodoris westraliensis (O’Donoghue,

1924)

Anderson (2008)

Californiconus californicus (Reeve, 1844) Triopha catalinae (Cooper, 1863) Valdés et al. (2013)

Cephalopoda

Octopus insularis Leite & Haimovici, 2008 Unidentified Aplysiidae Rosas-Luis et al. (2019)

ARTHROPODA

Decapoda

Unidentified crab Aplysia juliana (Quoy & Gaimard, 1832) Koh (2005b)

Calcinus tubularis (Linnaeus, 1767) Thuridilla hopei (Vérany, 1853) Horst (2009)

Caphyra yookadai Sakai, 1933 Tritoniopsis elegans (Audouin, 1826) Kuroe and Mada (2007)

Necora puber (Linnaeus, 1767) Spurilla neapolitana (Delle Chiaje, 1841) Silva (2008)

Metacarcinus magister (Dana, 1852) Aplysiopsis enteromorphae (Eliot, 1905) Trowbridge (1994)

Hemigrapsus oregonensis (Dana, 1851) Aplysiopsis enteromorphae (Eliot, 1905) Trowbridge (1994)

Sagaminopteron nigropunctatum Carlson & Hoff,

1973

Lambrachaeus ramifer Alcock, 1895 Anker and Ivanov (2020)

Mexichromis mariei (Crosse, 1872) Lambrachaeus ramifer Alcock, 1895 Anker and Ivanov (2020)

ASTEROIDEA

Solaster sp. Cadlina cf. luteomarginata Hildering and Miller (2007)

Coscinasterias muricata Verrill, 1867 Doris cameroni (Allan, 1947) Chuk (2007)

Pycnogonida

Unidentified Picnogonida Okenia virginiae (Gosliner, 2004) Arango and Brodie (2003)

Anoplodactylus californicus Hall, 1912 Dondice occidentalis (Engel, 1925) Piel (1991)

Anoplodactylus evansi Clark, 1963 Aplysia parvula Mörch, 1863 Rogers et al. (2001)

ACTINOPTERYGII

Caulolatilus microps Goode & Bean, 1878 Tectipleura (various species) Bielsa and Labisky (1987)

Sebastes carnatus (Jordan & Gilbert, 1880) Unidentified Heterobranchia Loury (2011)

Gadus macrocephalus Tilesius, 1810 Unidentified Nudibranchia Yang and Nelson (1999)
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done in order to minimize the amount of replicates

considering a) animal availability and b) ethical

considerations related to the use of octopus in

experimental assays (Moltschaniwskyj et al. 2007).

The rationale was similar to that explained in the

‘‘Aquarium experiments’’ for the diet composi-

tion section, as we intended to assess whether the

predators (octopuses) were healthy and hungry when

offered P. maculata as a prey. In case the octopus did

not feed upon P. maculata, we are confident that the

additional 24 h starvation period (5–6 days) did not

significantly alter the predatory behavior of the

octopus with the control food. Alternatively, in the

case the octopus would have eaten P. maculata, then

we could assume that the predators were hungry and

there was no need to offer a control prey. We

performed at least 10 replicates for each predator

species (Table 3) and compared the frequency of

consumption of control food with the frequency of

consumption of P. maculata through Fisher exact

tests.

Field experiments

Due to the sensitivity of local fish to manipulation and

aquarium maintenance, we evaluated their predatory

response through a field experiment. Trials consisted

in offering to each potential predator, a specimen of P.

maculata or a similarly sized control food (piece of

raw meat) through SCUBA diving using a long

(* 40 cm) handled homemade plastic spoon

(Fig. 12 in the Supplementary material). For each

fish, we recorded whether the sea slug was consumed

(C), rejected (R), or avoided (A). While both R and A

implied that the sea slugs were not consumed, the

difference between the two behavior categories was

that R included an initial exploratory manipulation of

the prey followed by an active rejection (fish swal-

lowed the sea slug and then spat it out), while in A

there was no initial exploratory manipulation, and the

predator avoided the prey after a careful visual

inspection. We compared the frequency of consump-

tion events between prey types for each predator

species using Fisher exact tests (see Supplementary

material for further details). The individuals of P.

maculata were collected shortly before the trials in the

same sites where these were performed to avoid the

translocation of specimens. Even though the selected

species (A. patachonicus, S. oculatus, P. semifasciata

and P. brasilianus) are among the most abundant

benthic-feeding fish species within the Nuevo gulf

(Irigoyen et al. 2013), we performed the trials in sites

where these species are both (a) very common and

(b) confident to the presence of divers. The sites we

selected (Folı́as shipwreck and the Nuevo park; Fig. 1)

are recognized diving points in the area and thus are

frequently visited by recreational SCUBA divers.

Also, these fishes are highly inactive during most of

the time, so trials were performed during spring and

summer, when warmer sea temperature favors their

feeding activity (Beltramino et al. 2019). These two

factors maximized the probabilities of the fish accept-

ing the food offered from the diver, at the risk of

overestimating the predatory behavior of the fishes.

We performed all statistical analyses using R v3.5.2 (R

Core Team 2020), and significance level for all

statistical tests was set at a = 0.05 (Zar 2010).

Table 2 continued

Predator Prey References

Tetraodontidae Stylocheilus striatus (Quoy & Gaimard,

1832)

Roberts (2005)

Labridae Aplysia spp. Rogers (2001)

Hypsypops rubicundus (Girard, 1854) Peltodoris nobilis (MacFarland, 1905) Harris (2006)

Pomacentridae Phidiana lascrucensis Bertsch & Ferreira,

1974

Hermosillo (2002)

Oligocottus maculosus (Girard, 1856) Aplysiopsis enteromorphae (Eliot, 1905) Trowbridge (1994)
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Results

Diet of Pleurobranchaea maculata

Aquarium experiments

The aquarium experiments revealed that P. maculata

preyed upon a minimum of five of the species present

in the Nuevo gulf, belonging to all the groups we

selected based on the literature: sea anemones,

hydrozoans, colonial ascidians and sea slugs. How-

ever, we found that within these groups, there are

species-specific differences in the frequency and

intensity of predation. For example, among sea slugs,

smaller individuals of P. maculata were predated but

there was no predation on the native sea slug Doris

fontainii d’Orbigny, 1837 (Table 1). In the case of

colonial ascidians, we found that none of the species

was consumed in a frequency that matched the control

food, although in the case of the non-native Diplosoma

listerianum, colonies were consumed in 50% of the

replicates, while for the native Aplidium variabile no

consumption was observed (Table 1). In the case of sea

anemones, we found differences in body surface

Table 3 Species used as potential predators in aquarium

(A) and field (F) trials, amount of replicates performed for each

species (N), average and range size of predators and prey and

percentage of control food consumed by each predator. The last

column indicates if there was consumption upon the sea slugs

based on a Fisher exact test comparing the control food and

experimental (sea slug) consumption percentages. The latter

was zero for every predator, so it is not indicated in another

column. Non-native species are marked with an *. In the case

of fish, replicate numbers are indicated for control-treatment

food items. Sizes correspond to carapace width�, body length��

and dorsal mantle length��� (all in mm). nd: no data. **Caution

is advised when reading this significance test because repli-

cates were not independent between treatments (see main text)

Species Trial N Control

food

Predator size

(range) in mm

Prey size (range) Control prey

consumption

(%)

Consumption

(significance)
Control Treatment

ARTHROPODA

Decapoda

*Carcinus maenas
(Linnaeus, 1758)

A 14 Mussels 60.6 (45–74) � 33.2

(13.6–47.5)��
79.1 (20 -

95)��
41 NO (p\ 0.001)

Ovalipes
trimaculatus (De

Haan, 1833)

A 10 Mussels 82.3 (51–106)� 35.9

(16.6–48.9)��
77.7

(42–105)��
55 NO (p\ 0.001)

MOLLUSCA

Cephalopoda

Octopus
tehuelchus
(d’Orbigny,

1834)

A 11 Crabs 41.0

(34.8–45.9)���
28.6 (25–34)� 64.3

(34–77)��
81 NO

(p\ 0.001)**

CHORDATA

Actinopterygii

Sebastes oculatus
Valenciennes,

1833

F 5–5 Raw

meat

nd nd 100 NO (p = 0.008)

Pinguipes
brasilianus
Cuvier, 1829

F 4–3 Raw

meat

nd nd 100 NO (p = 0.029)

Acanthistius
patachonicus
(Jenyns, 1840)

F 13–13 Raw

meat

nd nd 100 NO (p\ 0.001)

Pseudorpercis
semifasciata
(Cuvier, 1829)

F 18–17 Raw

meat

nd nd 89 NO (p\ 0.001)
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consumed between both species. Predation intensity

was significantly higher (p\ 0.001) for Parabun-

odactis imperfecta Zamponi & Acuña, 1992 than for

the acontiate Actinothoe lobata (Carlgren, 1899)

(Fig. 11a in Supplementary material). In agreement

with this observation, we noticed some degree of

aversive behavior of P. maculata while eating A.

lobata, which we did not register with P. imperfecta

(Fig. 10 in Supplementary material). Generally, this

behavior correlated with the extrusion of acontia by A.

lobata, structures that are absent in P. imperfecta.

Stomach content

The cumulative prey curves show that the number of

analyzed stomachs was sufficient to reach a slope of

less than 0.1 in both sites and seasons (Fig. 2).

However, the slope was significantly different to zero

in all cases (Storni port, summer: t = 13.45,

p\ 0.001, winter: t = 16.33, p\ 0.001; Punta Este,

summer: t = 10.33, p = 0.002, winter: t = 18.33,

p\ 0.001), indicating that diet composition is even

richer than we observed. With a similar number of

samples, the composition of the diet almost did not

vary between sites and seasons, except for the natural

rocky reef in summer, where the diet was slightly less

diverse (Fig. 2). Sea slugs were larger in the port, as

indicated by the BW of P. maculata, which was higher

than in the natural rocky reef (F = 130.91, p\ 0.001),

but the relative consumption rate, as evidenced by the

RI, did not differ between both sites (v2 = 0.22,

p = 0.638, Fig. 3). Among seasons, we found no

differences in BW (F = 3.16, p = 0.077), but the RI

was lower in summer than in winter in both sites

(v2 = 20.64, p\ 0.001, Fig. 3).

We found 31 taxa in the stomach content of P.

maculata (Table 4; Fig. 4), including algae (9 taxa),

invertebrates (21 taxa) and vertebrates (1 taxa). The

MCA showed clear differences in terms of diet

composition between sites, and less clear differences

between seasons. The latter were associated with the

presence of some specific taxa that were more frequent

during the summer than in winter, such as copepods

and peracarids (see the summer samples grouped in

the bottom left corner in Fig. 5). In terms of the

different taxa, diet in the port area was characterized

by the high frequency of unidentified invertebrates

(mainly large soft bodied invertebrates), bivalves and

sea anemones while the diet in the natural rocky reef

was characterized by the higher abundance of

Rhodophyta, the non-native colonial ascidian Diplo-

soma listerianum, Ochrophyta [mainly Dictyota

dichotoma (Hudson) J.V.Lamouroux] and terebellid

palps (Fig. 6). Overall, terebellid palps were the most
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abundant items in both sites and seasons, followed by

red algae, the non-native colonial ascidian D. listeri-

anum, unidentified invertebrates, D. dichotoma and

bivalves (Fig. 6), mainly Aulacomya atra and Mytilus

spp. (based on the foot size and being them the most

common bivalves in the study area). Unidentified

invertebrates were mainly large prey, such as antho-

zoans and bivalves, which were rarely consumed as a

whole; instead, their body surface was gradually

scrapped (see previous section) and therefore the

material was highly disintegrated and difficult to

identify. Some prey items showed a strong seasonal

pattern, being more frequent in summer (D. listeri-

anum, peracarids and copepods) or in winter (gas-

tropods and nemerteans). Others showed a clear

spatial pattern, being more frequent in the port area

(e.g. bivalves) or in the natural rocky reef (e.g.

Ochrophyta), while others showed both, such as

Rhodophyta, that were more frequent in winter and

in the natural rocky reef; nematodes, that were more

frequent during the summer only in the natural rocky

reef, or hydrozoans, which showed a great seasonal

effect only in the port (Fig. 6).

Predators of Pleurobranchaea maculata

Aquarium experiments

None of the selected potential predators consumed P.

maculata under the experimental conditions, but they

did consume the control prey items (Table 3). These

differences were significant when comparing the

frequency of consumption of at least one prey

specimen (Fisher exact test for C. maenas:

p\ 0.001; for O. trimaculatus: p\ 0.001; O. tehuel-

chus: p\ 0.001). In the case of both crab species, we

frequently observed that the predators approached the

slugs and softly grabbed them with their claws in an

exploratory attitude that lasted a few seconds, and in

any of these events, the slugs were not injured in any

visible way. All individuals, both predators and prey,

were in a good condition after every trial and there was

no mortality recorded for any predator species.

Field experiments

Fish did not consume P. maculata (Table 3), even

though the conditions of the experiment maximized

the probabilities of consumption. Regardless of the

species, most of the fish swallowed the slugs when we

offered them in the field, but immediately spat them

out and avoided them thereafter, causing no apparent

harm or injury to the slug. Instead, when we offered

the control food to the predators, almost all the

individuals ate it voraciously (Fig. 7). On some

occasions, fish immediately entered a crevice after

swallowing the food items, so we were unable to

observe whether they ultimately consumed or rejected

the prey. These cases were not considered in the

analyses. In both sites where these trials were

performed, naturally occurring individuals of P.

maculata were numerous and within the reach of the

fish. However, we did not see them attack these slugs

either during the course of the experiment.
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Table 4 Frequency of occurrence of each prey item found in the stomach content of P. maculata in summer and winter in the port

(STO) or the natural rocky reef (PE). Non-native species are marked with an *

Taxon STO PE

Summer Winter Summer Winter

OCHROPYHTA

*Dictyota dichotoma (Hudson) J.V. Lamouroux, 1809 0.018 0.041 0.216 0.527

*Undaria pinnatifida (Harvey) Suringar, 1873 0 0 0.020 0

RHODOPHYTA

*Lomentaria clavellosa (Lightfoot ex Turner) Gaillon, 1828 0.088 0 0.039 0.055

*Anotrichium furcellatum (J. Agardh) Baldock, 1976 0.053 0.162 0.588 0.055

Rhodomelaceae 0.105 0.054 0.176 0.582

Ceramium sp. 0.035 0.081 0.157 0.400

Heterosiphonia sp. 0 0.014 0.039 0.091

Stylonema sp./Erythrotrichia sp. 0 0 0 0.018

CHLOROPHYTA

Ulva sp. 0.018 0 0 0.055

CNIDARIA

Hydrozoa

Obelia sp. 0 0.122 0.020 0.018

Plumularia sp. 0 0 0.020 0.055

Anthozoa (unidentified) 0.088 0.135 0.020 0.018

NEMATODA (unidentified) 0.088 0.068 0.294 0.073

NEMERTEA (unidentified) 0 0.054 0 0.018

ANNELIDA

Polychaeta

Syllidae 0.053 0 0.078 0.018

Phyllodocidae 0 0 0.078 0.018

Cirratulidae 0.053 0 0 0

Maldanidae 0.018 0 0 0

Terebellidae 0.018 0 0.039 0

Palps (Terebellidae-Cirratulidae) 0.228 0.297 0.784 0.945

Unidentified Polychaeta 0 0 0.020 0.036

BRYOZOA

Gymnolaemata

*Bugulina flabellata (Thompson in Gray, 1848) 0.018 0 0 0

MOLLUSCA

Bivalvia (unidentified) 0.368 0.230 0 0

Gastropoda

*Pleurobranchaea maculata (Quoy & Gaimard, 1832) 0 0.041 0 0.018

Aeolidiidae 0 0 0 0.018

CRUSTACEA

Copepoda (unidentified) 0.158 0 0.059 0.036

Peracarida

Amphipoda 0.035 0 0.039 0

Isopoda 0 0.014 0 0

Malacostraca

Pachycheles chubutensis Boschi, 1963 0.018 0 0 0
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Discussion

Our results support the hypotheses that (a) the non-

native sea slug Pleurobranchaea maculata is a highly

opportunistic predator with a high dietary plasticity

including more than 29 taxa of marine invertebrates

and algae, and (b) that it lacks predators in the South

Western Atlantic (SWA). We found that diet compo-

sition varied both geographically and temporally,

probably reflecting differences in the availability of

prey, interspecific competition with other opportunis-

tic predators, or both. The ability to exploit feeding

resources in spatially and temporally heterogeneous

environments greatly aligns with the plasticity hypoth-

esis (Richards et al. 2006). In addition, our experi-

mental and field observations firmly indicate that the

effect that predators can have onP. maculata is limited

within the invaded range, as the most abundant

potential predators showed an active rejection of P.

maculata (but see recent findings by Battini and Bravo

2020). These results suggest that there is an absence of

biotic resistance against P. maculata within the SWA,

although further evidence is needed to support the

hypothesis that predation avoidance is mediated by the

presence of neurotoxins that are novel to the environ-

ment (i.e. novel weapons hypothesis).

Supporting the hypothesis of a high dietary plas-

ticity, we found some prey items to be unexpected

based on prior and subsequent observations on P.

maculata. First, some preys were protected by a hard

structure, such as bivalves, barnacles and small crabs,

and prior evidence indicated that P. maculata would

eat only soft-bodied invertebrates (Willan 1984). The

relatively high frequency in which some of them were

found, especially bivalves, suggests a scavenger habit

of P. maculata, supporting the observations made by

Bökenhans et al. (2019). Second, the non-native

colonial tunicate Diplosoma listerianum was among

the most frequent components of the diet of P.

maculata in the field, but consumption in the aquarium

was relatively low. As D. listerianum is one of the

dominant colonial ascidians in the field (Battini 2020),

this result suggests that although it is not a preferred

item such as sea anemones, it may be frequently

consumed due to its higher availability in relation to

other prey items. Although a poor experimental

consumption can be attributable to the low nutritional

value of ascidians compared to other benthic inverte-

brates (Wacasey and Atkinson 1987), this study

provides valuable information to future experimental

trials focusing on diet selection and preference. Other

very frequent items, such as terebellid palps and algae,

appear as very important items in the diet of P.

maculata in the natural rocky reef, but not in the port

area. Terebellid palps were very rarely associated with

whole polychaetes, suggesting that palps are either

digested much slower than the rest of the body, or are

torn off from their bodies during browsing predation

(Woodin 1982). The latter alternative appears to be

most probable considering the sedentary habits of

terebellids, which live inside tubes in the sediment or

between other organisms, exposing their palps only to

Table 4 continued

Taxon STO PE

Summer Winter Summer Winter

Cirripedia (unidentified) 0 0.014 0 0

CHORDATA

Ascidiacea

*Diplosoma listerianum (Milne Edwards, 1841) 0.456 0.176 0.686 0.345

Actinopterygii

Fish larvae 0 0 0 0.018

Unidentified material

Algae 0.088 0.027 0.157 0.091

Invertebrates 0.526 0.473 0.216 0.255
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capture food (detritus). In natural rocky reefs, terebel-

lids are relatively common (Rechimont et al. 2013)

and live in tubes inside the substrate, from where palps

emerge radially (Dales 1955). Sub-lethal browsing

predation, which affects anterior ends of benthic

infaunal species, and its impact on prey population

dynamics has been thoroughly described for spionid

polychaetes (de Vlas 1979; Zajac 1985, 1995), but it is

not so commonly described for terebellids, especially

in the SWA. Further study is needed to address the

impact of sub-lethal predation of P. maculata on

native populations of these terebellids. Overall, these

observations support the plasticity hypothesis,

suggesting that P. maculata is able to exploit resources

even in novel unfavorable environments (Richards

et al. 2006).

Artificial structures such as pilings and pontoons

favor the establishment of marine sessile species by

creating novel habitats for benthic and epibenthic

communities (Connell 2001; Glasby et al. 2007;

Dafforn et al. 2012; Dafforn 2017). In the port area,

the abundance of bivalves and anthozoans is very high,

while these taxa are scarcer and scattered in natural

rocky reefs (Rechimont et al. 2013; Epherra 2016). We

found that diet composition was consistently richer in

both food items in the port area than in the natural

Fig. 4 Photographs of the main taxa found in the stomach content of Pleurobranchaea maculata grouped by phylum: a Cnidaria,

b Nematoda, c Nemertea, d Polychaeta, e Bryozoa, f Mollusca, g Chordata and h Arthropoda. Scale bar = 1 mm
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rocky reefs. Bivalves and anthozoans have a larger

nutritional value than D. listerianum and terebellid

palps (Bell et al. 2003), which were the most frequent

food items in the natural rocky reef. It is likely that the

pilings of the port represent important feeding areas to

P. maculata, which would also explain why there is a

higher abundance of these slugs on the pilings

compared to the surrounding bottom (Battini 2020).

Also, it is possible that the differences in food

properties between sites accounted for the dissimilar-

ity in the size (weight) of the slugs, although an

alternative explanation may be that they reflect

ontogenetic shifts in the diet of P. maculata. However,

a careful inspection of the frequency of each type of

prey item per size class did not reveal a pattern

consistent with the latter alternative. Whether the

increase in body mass results in an enhanced repro-

ductive success or not remains to be tested, but our

results suggest that the increment in the supply of

resources provided by the artificial structures in the

Nuevo gulf might have favored the establishment of P.

maculata. These observations resemble those of

Bökenhans et al. (2019), who found anthozoans and

bivalves in stomachs of slugs collected in a shipwreck,

but not in the surrounding natural rocky reef. These

evidences suggest that artificial structures indirectly

favor P. maculata through the provision of more

condensed and nutritionally richer food sources,

which aligns with the increased resource availability

hypothesis (Sher and Hyatt 1999; Davis et al. 2000).

Furthermore, it may indicate that P. maculata can

increase its fitness in favorable novel environments, in

agreement with the plasticity hypothesis (Richards

et al. 2006).

Finally, our results support the hypothesis that P.

maculata lacks predators in the southern SWA, along

which it is currently expanding its distribution (Battini

et al. 2019). Experimentally, we found that the most

abundant potential predators including crabs, fish and

octopus, do not predate on P. maculata. Local

predators can greatly determine the outcome of an

invasion following the introduction of a novel poten-

tial prey (Rogers et al. 2016; Yorisue et al. 2019)

through biotic resistance. In the Nuevo gulf area, the

absence of predators (i.e. biotic resistance) could

certainly be a fundamental driver for the invasion

success of P. maculata. Our results suggest that the

only ‘predators’ that this species has in the southern

SWA are larger conspecifics that prey on small

individuals. Cannibalistic habits represent intraspeci-

fic forms of predator–prey interactions that can lead to

the self-regulation of population levels (Fox 1975;

Moksnes 2004). However, we found that successful

cannibalism occurred in a very low frequency and only

when other types of prey were unavailable, suggesting

that it is an opportunistic behavior rather than an

important self-regulation process. Overall, in this

work we found support for the absence of biotic

resistance as an explanation for the invasion success of

P. maculata. As far as we know, no predation events

upon this species (or genus) have been reported

elsewhere, although there is no clear evidence that

these do not occur in the native range. Addressing this

issue would add very valuable information to better

understand the causes driving the invasion success of

P. semifasciata
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P. maculata in the SWA, as well as it would provide

key information to predict the outcomes of further

introductions and conceive potential management

strategies (Gribben and Byers 2020).

The evidence found in this study indicates that the

mechanisms mediating predator avoidance are related

to the presence or secretion of unpalatable substances

from the mantle, and not to other types of behavioral or

morphological defenses. Prey specimens of P. macu-

lata were rejected before consumption, usually pre-

ceded by an initial harmless prey manipulation. Then,

the possibility of defenses based on toxicity following

ingestion (Caro and Ruxton 2019), which we initially

proposed as the mechanism underlying predator

avoidance, was unsupported. The presence of neuro-

toxins appears as one of the most interesting aspects of

this species as a potential prey, as they represent novel

weapons in the SWA (Farı́as et al. 2019) that could

threaten naı̈ve native predators (Llewelyn et al. 2014).

The adaptive value of neurotoxins as an antipredator

defense was discussed by Williams (2010), who

suggested that the function of these toxins could be

partially inferred by its distribution in tissues. In P.

maculata, an antipredator function for TTX was

proposed as it is contained in basement membrane

layer and bound cells of the epidermis (Salvitti et al.

2015), and there is evidence that some predatory fish

can sense neurotoxins through gustatory receptors

(Yamamori et al. 1988), which can ultimately lead to

prey rejection (Itoi et al. 2014). Blue-ringed octopuses

(Hapaloclaena spp.) also harbor neurotoxins in the

skin and there is no evidence that it is secreted

(Williams 2010). In these octopuses, the adaptive

value of TTX probably relates to toxicity following

ingestion, which is consistent with the presence of blue

aposematic rings that indicate the presence of TTX

through visual stimuli (Guilford and Cuthhill 1991;

Williams 2010). In contrast, there are no signs of

aposematism in P. maculata, which has a cryptic

rather than a conspicuous appearance. In this species,

there is no evidence that TTX can be secreted upon

any kind of stimuli, although traces of the toxin were

found in the mucus of some individuals (Khor et al.

2013). However, neurotoxins are not the unique

chemical defense in P. maculata. The absence of a

protective shell in many Heterobranchia has promoted

the development of a diverse range of defense

strategies (Behrens et al. 2005). Among them, the

acidification of the mantle through dorsal glands was

described in other pleurobranchids, as well as in other

unrelated Heterobranchia (Thompson 1969; Wägele

et al. 2006; Avila et al. 2018). Indeed, the mucus

secreted by P. maculata is extremely acidic, with pH

values ranging between one and two (Salvitti et al.

2015). Interestingly, P. maculata is not the only

species in the study area with such a level of mantle

acidification. We found that the native pleurobranchid,

Berthella patagonica (d’Orbigny, 1835) and the native

dorid Geitodoris patagonica Odhner, 1926 had very

similar pH values (Muniain 2001; Battini 2020).

Hence, we could not determine whether neurotoxins

or mantle acidification were responsible for producing

the response we observed in fish, crabs and octopuses,

although prey rejection was probably driven by either

of these chemical defenses. A more detailed assess-

ment of the chemical ecology of P. maculata would

provide more precise evidences of the mechanisms

underlying predator avoidance, and if its invasion

success can be explained, at least in part, by the novel

weapons hypothesis.

Invasion success rarely relies on a single factor

(Barney and Whitlow 2008; Catford et al. 2009;

Gurevitch et al. 2011; Heger et al. 2013; Saul et al.

2013; Enders et al. 2020). Instead, it depends simul-

taneously on various drivers and on how they combine

to favor or hinder the invasion process. In this work,

we provide evidence that supports that the dietary

plasticity and efficient anti-predator strategies are

traits that can greatly increase the invasive potential of

P. maculata. We suggest that these traits can also

determine the fate of introduced gastropods besides

other intrinsic morphological or reproductive charac-

teristics (Martel et al. 2004). The majority of sea slugs

appear to have few predators (Valdés et al. 2013), but

many species have a very specialized diet (Wägele

1989; Trowbridge 1991; Barnes and Bullough 1996),

so these traits appear as relatively rare within the

group. Indeed, selective dietary requirements were

suggested as limiting factors to the introduction and

spread of some sea slugs such as the grazer Syphonota

geographica (A. Adams and Reeve, 1850). This

species could only establish in the Mediterranean

Sea after the introduction of its preferred seaweed

Halophila stipulacea (Forssk.) Asch. (Mollo et al.

2008). However, some of the most widespread sea

slugs like Polycera hedgpethi Er. Marcus, 1964

(Keppel et al. 2012), Cuthona (= Trinchesia) perca

(Er. Marcus, 1958) (Martynov et al. 2007) or Tenellia
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adspersa (Nordmann, 1845) (Dhanya et al. 2017) have

apparently been favored by their dietary specializa-

tion. Their specialization in other widespread non-

native prey species such as the hydrozoan Ectopleura

crocea (Agassiz, 1862), the anemone Diadumene

lineata (Verrill, 1869) or the bryozoan Bugula neritina

(Linnaeus, 1758) (Keppel et al. 2012; Fofonoff et al.

2018) probably aided their transportation along with

their prey as part of the hull biofouling of ships many

decades and centuries ago. However, to the best of our

knowledge, no general invasion patterns have been

studied for sea slugs at a global scale (Roll et al. 2009).

Even though predator–prey interactions can

directly determine the fate of the invasion process

(Rogers et al. 2016; Dick et al. 2017; Fincham et al.

2019; Yorisue et al. 2019), other numerous drivers

such as the propagule pressure, environmental favor-

ability, competition, parasitism and reproductive

ecology also play key roles. Some of these issues

have already been investigated for P. maculata

(Battini et al. 2019), while others need further study.

For example, there is a need to assess how intrinsic

characteristics related to the reproductive ecology

influence the success in the establishment of P.

maculata in the non-native range. Probably, the high

reproductive potential (Gibson 2003) also facilitates

the invasion success. In addition, further study is

needed to evaluate how the trophic interactions of this

species could affect the structure and function of

native ecosystems (Bökenhans et al. 2019, this study).

Finally, there is a need to understand the dynamics of

propagule pressure and dispersal mechanisms of P.

maculata along the SWA, which will not only provide

information related on the invasion history of the

species, but also a clearer perspective on how to

prevent and manage the introduction and spread of

other invasive species.

In conclusion, our work supports the hypotheses

that P. maculata is an opportunistic predator with a

high dietary plasticity that reflect an ability to exploit

resources in different types of habitats. Further study is

needed to determine to what extent this predation has

an ecological impact on native benthic communities.

Additionally, a closer examination into geographical

and seasonal patterns in the distribution of species

with similar trophic characteristics, such as sea urchins

and crabs, may contribute to understanding to what

degree the trophic niches of these species are

partitioned, and how that may have contributed to

the invasion success of P. maculata. Finally, we found

that P. maculata lacks predators in the SWA that can

control the abundance and spread of this species (but

see Battini and Bravo 2020). Thus, our study suggests

that predator–prey interactions and dietary plasticity

appear as key drivers for the invasion success of P.

maculata in Patagonia, and they are likely to favor the

establishment of this invasive sea slug in other regions.

Our study also suggests that combined dietary plas-

ticity and efficient anti-predator strategies are traits

that can determine the outcome of this introduced sea

slug and probably other marine non-native species

worldwide.
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Pyšek P, Richardson DM (2010) Invasive species, environ-

mental change and management, and health. Annu Rev

Environ Resour 35:25–55. https://doi.org/10.1146/

annurev-environ-033009-095548

R Core Team (2020) R: a language and environment for sta-

tistical computing. R foundation for statistical computing,

Vienna, Austria. http://www.R-project.org/

Rechimont M, Galván DE, Sueiro MCM et al (2013) Benthic

diversity and assemblage structure of a north Patagonian

rocky shore: a monitoring legacy of the NaGISA project.

J Mar Biol Assoc UK 93:1–10. https://doi.org/10.1017/

S0025315413001069

Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M

(2006) Jack of all trades, master of some? On the role of

phenotypic plasticity in plant invasions. Ecol Lett

9:981–993. https://doi.org/10.1111/j.1461-0248.2006.

00950.x

Rivas AL, Ripa P (1989) Variación estacional de la estructura

termo-halina de Golfo Nuevo, Argentina. Geofis Int

28:3–24

Roberts M (2005) 1000s of Sea Hares in Hawaii. Sea Slug

Forum. Australian Museum, Sydney. http://www.

seaslugforum.net/find/14074. Accessed 15 Nov 2017

da Rocha RM, Zanata TB, Moreno TR (2012) Keys for the

identification of families and genera of Atlantic shallow

water ascidians. Biota Neotrop 12:269–303. https://doi.

org/10.1590/s1676-06032012000100022

Rogers C (2001) Pycnogonids - Sea Slug predators. Sea Slug

Forum. Australian Museum, Sydney. http://www.

seaslugforum.net/find/3407. Accessed 15 Nov 2017

Rogers CN, de Nys R, Steinberg PD (2000) Predation on juve-

nile Aplysia parvula and other small anaspidean,

ascoglossan, and nudibranch Gastropods by Pycnogonids.

The Veliger 43:330–337. https://doi.org/10.18941/

venusjjma.21.1_118_2

Rogers TL, Byrnes JE, Stachowicz JJ (2016) Native predators

limit invasion of benthic invertebrate communities in

Bodega Harbor, California, USA. Mar Ecol Prog Ser

545:161–173. https://doi.org/10.3354/meps11611
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Schwindt E, López Gappa J, Raffo MP et al (2014) Marine

fouling invasions in ports of Patagonia (Argentina) with

implications for legislation and monitoring programs. Mar

Environ Res 99:60–68. https://doi.org/10.1016/j.

marenvres.2014.06.006

Sher AA, Hyatt LA (1999) The disturbed resource-flux invasion

matrix: a new framework for patterns of plant invasion.

Biol Invasions 1:107–114. https://doi.org/10.1023/A:

1010050420466

Simberloff D, Von Holle B (1999) Positive interactions of

nonindigenous species: Invasional meltdown? Biol Inva-

sions 1:21–32. https://doi.org/10.1023/a:1010086329619

Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of

biological invasions: What’s what and the way forward.

Trends Ecol Evol 28:58–66. https://doi.org/10.1016/j.tree.

2012.07.013

Silva JP (2008) Spurilla neapolitana predator. Sea Slug Forum.

Australian Museum, Sydney. http://www.seaslugforum.

net/find/21086. Accessed 15 Nov 2017

Taylor DI, Wood SA, McNabb PS (2011) Population surveys of

Pleurobranchaea maculata and tetrodotoxin in Waitemata

Harbour. Report prepared to the Auckland Council. Nel-

son, New Zealand.

Taylor DI, Wood SA, McNabb PS et al (2015) Facilitation

effects of invasive and farmed bivalves on native popula-

tions of the sea slug Pleurobranchaea maculata. Mar Ecol

Prog Ser 537:39–48. https://doi.org/10.3354/meps11466

Thompson TE (1969) Acid secretion in the Pacific Ocean gas-

tropods. Aust J Zool 17:755–764. https://doi.org/10.1071/

ZO9690755

Toh CH (2008) Re: Gymnodoris rubropapulosa feeding. Sea

Slug Forum. Australian Museum, Sydney. http://www.

seaslugforum.net/find/21510. Accessed 15 Nov 2017

Trowbridge CD (1991) Diet specialization limits herbivorous

sea slug’s capacity to switch among food species. Ecology

72:1880–1888. https://doi.org/10.2307/1940985

Trowbridge CD (1994) Defensive responses and palatability of

specialist herbivores: predation on NE Pacific ascoglossan

gastropods. Mar Ecol Prog Ser 105:61–70. https://doi.org/

10.3354/meps105061
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